Autonomous transfer for reinforcement learning

نویسندگان

  • Matthew E. Taylor
  • Gregory Kuhlmann
  • Peter Stone
چکیده

Recent work in transfer learning has succeeded in making reinforcement learning algorithms more efficient by incorporating knowledge from previous tasks. However, such methods typically must be provided either a full model of the tasks or an explicit relation mapping one task into the other. An autonomous agent may not have access to such high-level information, but would be able to analyze its experience to find similarities between tasks. In this paper we introduce Modeling Approximate State Transitions by Exploiting Regression (MASTER), a method for automatically learning a mapping from one task to another through an agent’s experience. We empirically demonstrate that such learned relationships can significantly improve the speed of a reinforcement learning algorithm in a series of Mountain Car tasks. Additionally, we demonstrate that our method may also assist with the difficult problem of task selection for transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Autonomous Transfer Learning Algorithm for TD-Learners

The main objective of transfer learning is to use the knowledge acquired from a source task in order to boost the learning procedure in a target task. Transfer learning comprises a suitable solution for reinforcement learning algorithms, which often require a considerable amount of training time, especially when dealing with complex tasks. This work proposes an autonomous method for transfer le...

متن کامل

Transfer Learning Method Using Ontology for Heterogeneous Multi-agent Reinforcement Learning

This paper presents a framework, called the knowledge co-creation framework (KCF), for heterogeneous multiagent robot systems that use a transfer learning method. A multiagent robot system (MARS) that utilizes reinforcement learning and a transfer learning method has recently been studied in realworld situations. In MARS, autonomous agents obtain behavior autonomously through multi-agent reinfo...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Theoretically-Grounded Policy Advice from Multiple Teachers in Reinforcement Learning Settings with Applications to Negative Transfer

Policy advice is a transfer learning method where a student agent is able to learn faster via advice from a teacher. However, both this and other reinforcement learning transfer methods have little theoretical analysis. This paper formally defines a setting where multiple teacher agents can provide advice to a student and introduces an algorithm to leverage both autonomous exploration and teach...

متن کامل

Automatically Mapped Transfer between Reinforcement Learning Tasks via Three-Way Restricted Boltzmann Machines

Reinforcement learning applications are hampered by the tabula rasa approach taken by existing techniques. Transfer for reinforcement learning tackles this problem by enabling the reuse of previously learned results, but requires an inter-task mapping to encode how the previously learned task and the new task are related. This paper presents an autonomous framework for learning inter-task mappi...

متن کامل

Initial Progress in Transfer for Deep Reinforcement Learning Algorithms

As one of the first successful models that combines reinforcement learning technique with deep neural networks, the Deep Q-network (DQN) algorithm has gained attention as it bridges the gap between high-dimensional sensor inputs and autonomous agent learning. However, one main drawback of DQN is the long training time required to train a single task. This work aims to leverage transfer learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008